Storia della matematica indiana

Matematica indiana

Storia della matematica indiana

Dopo il collasso della Civiltà della valle dell’Indo nel 1500 a.C., la scrittura scomparve dall’Asia meridionale per lungo tempo. Sono assai controverse le date nelle quali la pratica dello scrivere riemerse nell’India e in cui la scrittura Brahmi fu sviluppata. Recenti evidenze archeologiche la datano intorno al 600 a.C., mentre alcuni studiosi propongono anche il 1000 a.C. Se le date più lontane sono corrette, forse Pitagora visitò l’India come sostenuto da alcuni storici (Florian Cajori) altrimenti la matematica indiana può aver beneficiato del contatto con il mondo greco in seguito all’invasione di Alessandro Magno. È anche possibile (come sostenuto dalla maggioranza degli studiosi) che le due tradizioni matematiche si siano sviluppate indipendentemente.

Nell’era vedica la matematica non era studiata solo per scopi scientifici, ma si incontrano esposizioni matematiche avanzate diffuse in tutto il grande corpo dei testi indiani di questo periodo. La Yajur-Veda composta dal 900 a.C., per prima affronta il concetto di infinità numerica. Yajnavalkya (900-800 a.C. circa) calcolò il valore di π con 2 cifre decimali. Le Sulba Sutras (risalenti intorno all’800 a.C.-200 D.C.) sono testi di geometria che usano numeri irrazionali, numeri primi, la regola del tre e radici cubiche, danno un metodo approssimato per la quadratura del cerchio, risolvono equazioni lineari ed equazioni quadratiche, determinano algebricamente terne pitagoriche e danno un enunciato e una dimostrazione numerica del teorema di Pitagora. Inoltre viene espressa un algoritmo infinito per il calcolo di radice di 2 con cui vengono calcolate le prime 5 cifre decimali.

Pingala (IV secolo a.C.-III secolo a.C.) inventò un sistema binario, studiò quelli che in seguito verranno definiti la sequenza di Fibonacci e il triangolo di Pascal; inoltre formulò la definizione di matrice. Tra il IV secolo a.C. ed il III secolo d.C. i matematici indiani cominciarono ad impostare i loro studi in una prospettiva unicamente speculativa. Furono i primi a sviluppare ricerche su teoria degli insiemi, logaritmi, equazioni di terzo grado, equazioni di quarto grado, serie e successioni, permutazioni e combinazioni, estrazione di radici quadrate, potenze finite e infinite. Il Manoscritto Bakshali, composto tra il III secolo a.C. ed il III secolo d.C., include soluzioni di equazioni lineari con più di cinque incognite, la soluzione di equazioni quadratiche, geometriche, sistemi di equazioni, l’uso del numero zero e i numeri negativi. Vi si trovano anche accurati algoritmi per il calcolo di numeri irrazionali.

Non si trova continuità negli sviluppi della matematica indiana: infatti i contributi importanti sono separati da lunghi intervalli di stagnazione in cui non si raggiunse nessun risultato.

Il Surya Siddhanta scritto circa nel 400 introduceva le funzioni trigonometriche del seno, coseno e le loro inverse. Gli indiani si occuparono anche di astronomia riuscendo a compilare precise tavole astronomiche che descrivevano il movimento apparente degli astri in cielo. Calcolarono l’anno siderale in 365.2563627 giorni, un valore inferiore di 1,4 secondi a quello accettato al giorno d’oggi. Questi lavori, durante il medioevo, furono tradotti in Arabo e in Latino.

Nel 499 Aryabhata introdusse il senoverso e compilò le prime tavole trigonometriche. Nell’Aryabhata illustrò i metodi di calcolo di aree e volumi dei principali enti geometrici (non tutti corretti) e inoltre in questa opera appare la notazione posizionale decimale. Calcolò il valore di π con quattro cifre decimali.

Nel VII secolo invece Brahmagupta (598– 668) per primo nel Brahma-sphuta-siddhanta usò senza riserve lo 0 e il sistema decimale. Scoprì inoltre l’identità e la formula che portano il suo nome non capendo tuttavia che era valida solo per i quadrilateri ciclici; cioè inscrivibili in una circonferenza. Esplicitò le regole di moltiplicazione tra numeri positivi e negativi. È da una traduzione del testo che i matematici arabi accettarono il sistema decimale.

Nel XII secolo, Bhaskara (1114 – 1185) scoprì le formule di addizione e sottrazione delle funzioni trigonometriche e concepì dei metodi molto vicini al calcolo differenziale. introducendo concetti simili alla derivata: per calcolare l’angolo di posizione dell’eclittica ad esempio calcolò correttamente l’equivalente delle derivate delle funzioni trigonometriche. Provò anche un equivalente del Teorema di Rolle e studiò l’equazione di Pell. Afferma che qualsiasi quantità divisa per 0 dà infinito. Si dice che avesse predetto la data in cui sua figlia Lilavati si sarebbe dovuta sposare per avere un matrimonio felice; tuttavia una perla cadde nel complesso meccanismo che doveva contare il tempo e così Lilavati rimase vedova. Per consolarla il padre diede il suo nome al suo più importante trattato di matematica.

Dal XIV secolo Madhava di Sangamagrama scoprì l’attuale espansione in serie di Taylor della funzione arcotangente ottenendo poi varie serie infinite che danno come risultato π (tra cui la formula di Leibniz per pi) grazie alle quali riuscì a calcolare le prime 11 cifre decimali del numero. Creò la scuola del Kerala i cui membri nei successivi secoli svilupparono il concetto di virgola mobile e utilizzarono metodi iterativi per la soluzione delle equazioni non lineari. Trovarono inoltre le espansioni in serie di Taylor delle altre funzioni trigonometriche. Nonostante si fossero avvicinati a concetti quale quello di derivata i matematici della scuola del Kerala non riuscirono mai a sviluppare una teoria globale del calcolo.

Nel XVI secolo per la matematica indiana, anche per via di un periodo di forte instabilità politica, iniziò il declino.



Categorie:H15- Scienza dell'India antica - Science of ancient India

Tag:,

Rispondi

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione / Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione / Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione / Modifica )

Google+ photo

Stai commentando usando il tuo account Google+. Chiudi sessione / Modifica )

Connessione a %s...

Officina Galilei per il Teatro e la Musica

Museo virtuale delle maschere e del teatro popolare

CULTURE ASIATICHE - ASIAN CULTURES

STUDIES AND RESOURCES FOR HIGH SCHOOLS AND UNIVERSITY

IL CALEIDOSCOPIO

Per guardare il mondo con occhi diversi

NUOVA STORIA CULTURALE / NETWORK PHILOSOPHY

NUOVA STORIA CULTURALE / NEW CULTURAL HISTORY

TEATRO E RICERCA - THEATER AND RESEARCH

Sito di approfondimento e studio della Compagnia Lost Orpheus Teatro

LOST ORPHEUS ENSEMBLE

Modern Music Live BaND

Il Nautilus

Viaggio nella blogosfera della V As del Galilei di Potenza

Sonus- Materiali per la musica moderna e contemporanea

Aggiornamenti della Rivista "Sonus"- Updating Sonus Journal

The WordPress.com Blog

The latest news on WordPress.com and the WordPress community.

Antonio De Lisa - Scritture / Writings

Teatro Musica Poesia / Theater Music Poetry

In Poesia - Filosofia delle poetiche e dei linguaggi

Blog Journal and Archive diretto da Antonio De Lisa

%d blogger hanno fatto clic su Mi Piace per questo: